Treatment and Prevention of Periodic Paralysis”

Robert C. Griggs, M.D.
Chair, Executive Committee Muscle Study Group
Principal Investigator, Clinical Investigation of Neurological Channelopathies (CINCH)
Channelopathies: Evolution of the Concept

- 1952 – Hodgkin and Huxley propose channels
- 1976 – Neher and Sachman – patch clamp demonstration
- 1991 – Ptacek et al – First mutation in human channel causing periodic paralysis
- 2009 – Over 100 neurological channelopathies
Neuromuscular Channelopathies – Hereditary - Examples

- Periodic paralysis (Na+, K+, Cl-, Ca++)
- Myotonias (DM-1/DM-2; Na+, Cl+)
- Episodic ataxias (K+, Ca++)
- Myasthenias – 14 types, voltage/ligand gated
- Rippling muscle disease
- Malignant hyperthermia
Neuromuscular Channelopathies - Acquired

- Myasthenias (4 types)
- Rippling muscle disease
- CIDP (?) Na+
- Neuromyotonia/myokymia (K+)
- Autonomic neuropathies
- Stiff person syndrome
- Ataxias
- Other
Specific hypotheses:

(1) Channelopathies must have both a specific molecular lesion (mutation) and intercurrent, triggering factor(s) to manifest symptoms.
Specific hypotheses:

(2) Repeated attacks result in progressive neural or muscle injury
Specific hypotheses:

(3) Prevention of attacks by modifying triggering factors will improve symptoms and quality of life and prevent/reverse target-tissue injury.
Dichlorphenamide in the periodic paralyses (HYP-HOP)
 14-centers (5 countries): Muscle Study Group
Mexilitine in Non-Dystrophic Myotonia - CINCH Study
 (PI Richard Barohn)
 7 Centers (2 countries)
Acetazolamide/K+ in Andersen-Tawil Syndrome
 3 Centers (2 countries) CINCH study (PI Paul Twydell)
Modified Protocol: Dichlorphenamidine vs Placebo in Hypokalemic and Hyperkalemic Periodic Paralysis

- 9 week placebo – controlled trial: Attack frequency and severity
- Year-long extension study strength, muscle mass
- Quality of life, side effects
Sites Recruiting Periodic Paralysis Patients for HYP HOP Trial

- **USA:**
 - Brigham & Women’s Hospital (Boston)
 - Columbia-Presbyterian Medical Center (New York)
 - Mayo Clinic (Rochester, MN)
 - Ohio State University (Columbus)
 - University of California - San Francisco (San Francisco)
 - University of Kansas Medical Center (Kansas City)
 - University of Rochester School of Medicine (Rochester, NY)
 - University of Texas Southwestern (Dallas)
 - Johns Hopkins (Baltimore)
 - University of Florida (Gainesville)
 - Washington University (St. Louis)

- **Canada:** London Ontario
- **UK:** London
- **France:** Paris
- **Italy:** Milan
Rare Disease Research: The U.S. Regulatory Approval Process

- Gold standard: 2 randomized, double-blind, placebo-controlled trials
- Orphan drugs:
 - Extended exclusivity (patent protection)
 - Tax benefits
 - Longer period for children
Pivotal Studies of Orphan Drugs Approved for Neurological Diseases

Jun Mitumoto, MPH,¹ E. Ray Dorsey, MD, MBA,² Christopher A. Beck, PhD,³ Karl Kieburtz, MD,² and Robert C. Griggs, MD²

Objective: To identify design elements of clinical trials leading to US Food and Drug Administration approval of drugs for neurological diseases with and without orphan indications.

Methods: We used publicly available information to identify approvals for drugs for neurological diseases with an orphan indication (n = 19) and compared them with recent approvals for drugs for neurological diseases without an orphan indication (n = 20). We identified “pivotal trials” from drug labels and drug approval packages, and assessed them on four elements of clinical trial design: control, blinding, randomization, and size.

Results: All drugs for neurological diseases (100%) approved without an orphan indication included at least two randomized, double-blind, placebo-controlled trials. In comparison, 32% of drugs with an orphan indication had at least two such trials ($p < 0.001$) and 74% had at least one ($p = 0.02$). Thirty-three pivotal trials were conducted for the 19 drugs approved with an orphan indication. Of the 33 trials, 11 (33%) did not use a placebo control, 9 (27%) were not double blind, and 4 (12%) were not randomized. Drugs approved without an orphan indication had more pivotal trials per drug (3.8 vs 1.7 trials; $p < 0.001$) and a larger mean trial size (506 vs 164 trial participants; $p < 0.001$).

Interpretation: The US Food and Drug Administration has approved orphan drugs for neurological diseases without randomized, doubled-blind, placebo-controlled pivotal trials. As orphan drug development grows, demand will likely increase for alternative designs for conducting adequate and well-controlled studies to demonstrate drug efficacy.

Ann Neurol 2009;65:000–000
“Orphan drugs for neurological diseases have been approved by the FDA without randomized, doubled-blind, placebo-controlled clinical trials. As therapeutic development for orphan diseases is increasing, the design of alternative clinical studies will likely become more important.”
Treatment of Acute Weakness

Hypokalemic Periodic Paralysis

- Treatment needed only for severe weakness
- Oral treatment if possible
 - Swallowing impairment is rare
 - Nausea or vomiting can occur
 - Potassium solutions – KCl is the least palatable
- IV treatment: most diluents lower serum K even with large concentrations of K
 - Bolus KCl (5mEq total)
 - Mannitol 5% as diluent
Treatment of Acute Weakness
Hyperkalemic Periodic Paralysis

- Treatment rarely needed
- Oral treatment if possible
 - Glucose; other simple sugars
 - Avoid K-containing foods
- Parenteral (rarely necessary)
 - IV glucose (and insulin?)
 - IV calcium gluconate
 - Ion-exchange resin (Kayexelate) – never needed for periodic paralysis
New Studies Under Development for Periodic Paralysis Treatment

- Carbonic anhydrase–worsened or unresponsive patients
- Sulfonamide-allergic patients (?)
- CAI-inadequate response
“Pivotal Studies of Orphan Drugs Approved for Neurological Diseases.”

Authors: J Mitsumoto (CINCH medical student), ER Dorsey, CA Beck, J Thompson, T Nguyen, K Kieburtz, RC Griggs

Comparing orphan drugs with non-orphan drugs
Other Considerations in Attack Prevention

- Exercise
- Diet
- Stress
- Hormonal changes
- Coincidental medications
 - Insulin
 - Diuretics
 - Beta blockers
Acknowledgements

Investigators: The Muscle Study Group (MSG) and Clinical Investigation of Neurological Channelopathies (CINCH).
Especially: Richard Barohn, Rabi Tawil, Emma Ciafaloni, Barbara Herr, Michael Hanna, Louis Ptacek, Steve Cannon, Anthony Amato, Valeria Sansone, Bertrand Fontaine